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Abstract- The higher order nonlinearity of a Boolean function is
a cryptographic criterion, which play a role against attacks on
stream and block ciphers. Also it play a role in coding theory,
sinceit isrelated to the covering radii of Reed-Muller codes. In
this paper, we study the lower bounds of second-order
nonlinearities of a class of cubic Boolean functions of the form
tr}(Ax¥"*2"*1) with n = 3r and 1 € F, and some classes of
cubic Boolean functions based on secondary construction. Whose
lower bounds on second order nonlinearities improved upon
previous existing general results.

Index Terms-Cryptography, derivative of Boolean functions,
second-order nonlinearity, partial spreads.

|. INTRODUCTION

Boolean functions play an important role in cryptography.
The Boolean functions used in streams ciphers must have
high order nonlinearity profile. Any function from F,n to F,
is called a Boolean function on n-variables, where F, = {0, 1}
be the prime field of characteristic 2 and F,» is extension
field of degree n over F,. The set of al n-variable Boolean
functions is denoted by B,,. The Algebraic Norma Form
(ANF) of the Boolean function is given as

)= & px"

Where x“=[I'_,x/ is a monomia andy, € F,. The
algebraic degree of £, denoted by deg (f) and is the maximum
degree of monomia for which x, 0. The Hamming
distance, d(f,g) between f,g € B, is the size of set {x €
Fon: f@® g+ 0}

The trace function f:F,n — F, is defined by tr{*(x) =

nLx?'. For given any x,y € Fyn, trf*(xy) is an inner
product of x andy. Let A, is the set of al affine Boolean
functions on n- variables. Nonlinearity of f € B,, is defined as

nl(f) = minic, {d(f,)}. The Walsh transform of f € B, at
A € F,n isdefined as:

Wr(A) = Txeppn (—1) D

The multiset {W;(1): 1 € Fn} is said to be the Walsh
spectrum of f. Following is the relationship between
nonlinearity and Walsh spectrumof f € B, is

1
nl(f) =21 - EmaerF2n|Wf(/1)|
By Parseval's identity
2 _ 92
Z/'{Ean Wf(z-) = 24"
It can be shown that |W, ()| = 2™/, which implies that

nl(f) < n-1_ 2n/2—1

Definition 1: Suppose n is an even integer. A function
f € B, issaid to be a bent function if and only if nl(f) <
2t —2n/271 (e, Wp(Q) = {22, —2™/?} for
AEFn

Bent functions first time introduced by Rothous [10]. For
odd n =9 the tight upper bound of nonlinearities of
Boolean functions B,, is not known.
Definition 2: The derivative of f € B,, with respect to
a € F,n denoted by D, f(x) isdefined as

Dof(x) = f(x) + f(x +a) foral x € Fyn.
The higher order derivatives are defined as follows.

Definition 3: Let V be a r-dimensiona subspace of F,n
generated by @, , a,, ....a,, i.& V=<a , a,,...a >

The r-th order derivative of f € B, with respect to V,
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denoted by Dy (f) or Dy, Dg,, ..., Dg, f(x) is defined by

Dyf(x) = Dq,,Day s Dq, f(x) fordlx € Fyn. .

It is noted that the r-th order derivative of f depends only

on the choice of the r-dimensional subspace ¥V and
independent of the choice of the basis of V.
Definition 4: Let f € B, for every non-negative integer r
smaller than n, we denote by nl.(f) the r-th order
nonlinearity of f, which is the minimum Hamming distance
of f from all n variable Boolean functions of algebraic degree
at most r.

The set of all Boolean function of » variables of degree at
most r is said to be the Reed-Muller codeRM (r, n), of length
2™ and of order r. The sequence of values n nl.(f), for n
ranging from 1 ton — 1, is said to be the nonlinearity profile
of f The first order nonlinearity of a Boolean function on n
variables can be computed by using fast Walsh transform in
time om2"). Unlike first-order nonlinearity there is no
efficient algorithm to compute second-order nonlinearities for
n>11. Most efficient agorithm due to Fourquet and
Tavernier [6] works for n < 11 and up to n = 13 for some
special  functions. Thus, identifying classes containing
Boolean functions with “good” nonlinearity profile is an
important problem. There is no efficient algorithm to compute
rth-order(for r > 2) nonlinearity of a Boolean function.
Carlet [3, 4] for the first time did the systematic study of
higher order nonlinearity and nonlinearity profile of Boolean
functions. He developed a recursive approach to compute the
lower bounds on rth-order nonlinearities of a function f using
the (r — 1)th order nonlinearities of the derivatives of the f.
He also obtained of the lower bounds of the second-order
nonlinearities of severa classes of functions, Welch function
and the inverse function being among of them. We also refer
to results due to Carlet-Mesnager [5] and Sun-Wu [12]. The
best known asymptotic upper bound on nl,.(f) is obtained by
Carlet and Mesnager [5], whichis

\15

nl, (f)=2"" _T'(l +2) 2 2 +0(n"?).

In [5] Carlet efficiently lower bounded the nonlinearity
profile of Dillon type bent functions. Using Carlet's approach
Gangopadhyay, Sarkar and Telang [7], Gode and
Gangopadhyay [8], Sun and Wu [12] obtained the lower
bounds of the second-order nonlinearities of several classes of
Boolean functions. In this paper, we consider a class of cubic
Boolean functions of the form tr/*(1 x2*+2"*+1) with n = 3r
and A € F,r. A lower bound of second-order nonlinearities of
these functions is obtained and compared with the lower
bounds of second-order nonlinearities obtained for functions
belonging to some other classes of functions which are
recently studied.

Il. PRELIMINARIES

A. Quadratic Boolean function
Suppose f € B, isaquadratic function. The binary form
associated with f is defined by

B(x,y) =f(O+ f(x)+ f() + fx + ).
The kernel of B(x, y) is subspace of F,» defined by

g ={x €Fm:B(x,y) =0Vy € Fpn}.

Lemma 1. ([1], Proposition 1): Let V" be a vector space over
afield F, of characteristic 2 and Q: V — F, be aquadratic
form, then the dimension of V and the dimension of the
kernel of O have the same parity.

Lemma 2. ([1], Lemma 1): Let f be any quadratic Boolean
function. The kernel, & is the subspace of F,» consisting of

those a € F,n such that the derivative D, f (x) is constant.
That is,

g = {x € Fyn : Dof = constant }.

If f is a quadratic Boolean function and B(x,y) is the
quadratic form associated with it, then the Walsh Spectrum
of f depends only on the dimension, k, of the kernd of
B(x,y) [1, 9]. The weight distribution of the Walsh
spectrum of £ is:

Wy (a) Number of a
O 2n _ 2n—k
ntk n—k-2
22 2,,,,(,1 + (_1) £(0) 2 2
ﬂ n—k—2
-2 72 on—k-1 _ (-1) 109 2

B. Recursive lower Bounds of Higher-Order Nonlinearities

Following are some results proved by Carlet [4].
Proposition 1. ([4], Proposition 2): Let f € B, and r bea
positive integer smaller than » then we have

nl(f) 2 3 o&b%nl,_; (Daf)

In terms of higher order derivatives,
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nl (f) = 2‘ aq,a;. arersl?ar)fnlr—i(DalDaz--Darf)

For every non-negative integer i < r.
In particular, forr =2,

nly(f) = 5 odi%nl(Dof)

Proposition 2. ([4], Proposition 3): Let f € B, and r be
apositive integer smaller than , then we have

nl,(f) = 2nt 1 \/zm ~ 2% aeryn -1 (Daf)

Corollary 1. [[4], Cordllary 2]: Let f € B, and rbe a
positive integer smaller than n. Assume that, for some non-
negative integers Mand m, we havenl,_,(D,f) = 2"t —
M?2™ for every nonzero a € F,n. Then

n+m-1
nl,(f) =271 — %J(zn —1DM2 =
+m—1

~ 2t M2

Carlet remarked that in general, the lower bound given by
the Proposition 2 is potentially stronger than that given in
Proposition 1 [4].

In this paper, we study the lower bounds of second-order
nonlinearities of a class of cubic Boolean functions of the
form trf* (A x* "+ *1) with n = 3r and 1 € F;» and some
classes of cubic Boolean functions based on secondary
construction. Whose lower bounds on second order
nonlinearities improved upon some previous existing
general results. The derivative of any cubic Boolean
function has agebraic degree at most 2 and the Walsh
spectrum of a quadratic Boolean function [1] is completely
characterized by the dimension of the kernel of the bilinear
form associated with it.

[11. SECOND ORDER NONLINEARITY OF A CLASS
OF CUBIC BOOLEAN FUNCTIONS OF THE
PARTICULAR TYPE

Theorem 1. Suppose f € B, such that flx) =
tr(Ax¥ "+ *1) v x € Fyn, with n=3r and 1 € F,r.
Then

—4

3n+
nly(f) = 271 — 27

Proof:  f(x) =trf*(Ax2""*¥*1) with n = 3r and 1 € F,r,
thefirst order derivativef w.r.t.a #0, a € Fyn is
Dof (x) = trf (A (x + @) 7+ + (A x2742741)

2r T T 2r
= 151‘1"(/1(ax2 T2 g 42741 4

azzrxzr“)) + (%)

Where [(x) is an affine Boolean function. Let b € F,n such
that a # b, then

Dy Dof (x) = tr{(ar((x + )" ™*2" + x277+7)
+ a?A(Got BT 4 )
+ azzrl((x +b)2' 1 4 x2T+1) )

= tr{'(aA(b? x*"" + b¥ x? + p¥TH)
+ a? A(bx¥" + b2 x + b2THY)
+a? A(bx?" + b x + b¥HY))

= trP(x*" A(ab?” + a¥'b) + x? 2(ab®" +
erb) + xl(azrbzzr 227'
constatns

bzr)) +
= trl'(x ()lzn_zr(abzr + azrb)zn_zr
+ /,lzn—r(abzzr 22rb)2n_r

+ (@ b2 + a2 p? ))) + constant

D, D,f isconstant if and only if

-2r on-r
+/12n T( bZZT erb)

2" 2"y _
b?')=0

2" (ab? + a?'b)”
+2(a? b +

Since 1 € F,r and n = 3r, therefore,
r 7 N2 2r 2r 2T
A((ab2 + a?'b) + (ab?” + a*”'b)

+ (azrbZZr 22Tb2T)> — O

. 27 27 2n-2r 221 221 2n-T
i.e., (ab + a b) +(ab + a b)

221

+ (azrbZZT erbzr)) — 0
i.e. ab? + aZTb + @' p?" + a®p? + 22"
24Tb231' — O.

Using x2" = x and n = 3r, we have
ab? + a¥b=0
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(b/a)* =1,
b € anlr.
Thus, for any non zero a € F,n, number of waysin which
b can be chosen so that D, D, f is constant are 27 (including
the case b = 0). Hence by Lemma 2 we have, the dimension,
k of the kernel associated with D, f isr i.e, k = r. Thus the
Walsh transform of D, f at any point € F,n iS

n+k n+r

Wp, @ =27 =272

for b+ 0

Therefore nonlinearity of D, f is

=2

nl(Dy f) = 271 =2 ©)

Using Proposition 1 we have

—4
nly(f) = 2n2 — 2%

Therefore we have a scope to get the better bounds using
Corollary 1. Comparing (1) and Corollary 1, we have

M=1 m= "+;_2, thenby Corollary 1,

n+

1 -2
nly(f) =27t — E\/(zn 12z tyon

ntr-2_

n+ 7 1
~ 21 _ 2 2
3n+r—4
~2n-1 _ 9273

(2)

V. SECOND ORDER NONLINEARITIES OF A SOME
CLASSES OF CUBIC BOOLEAN FUNCTIONS BASED
ON SECONDARY CONSTRUCTION

Lemma 3: Let g;(x,y) = (1 + y)trf (A(x? + x)) + ytr{ Ax?),
A€ Fz’t be a Boolean function defined on F,n, n =t + 1 then
the dimension of the kernel of the bilinear form associated to
Da,pyga 1S k + 1 where k is the dimension of the kernel of the
bilinear form associated to D,f; fi(x) = trf(Ax?), here
x € F,r, y € F, and f; be acubic Boolean function.

Proof: The function g; can be written as g;(x,y) =
trf(A(x + xy)) + trf(Ax%). Consider a 2-dimensiona
subspace V generated by two vectors (a,b) and (c,d). The
second order derivative of g at V isasfollows:

Dyg1(x,¥) = Dc.ayD (o 92 (x,¥)
=constant + Dy, f; (x) 3)
Clearly D p)g2(x,y) is quadratic hence by Lemma 2 the
kernel,

ED(ap)9a = {(c,d) € Fyt X F3:D(cq)Dqp)ga = constant}

={(c,d) € Fyt X F;:Daq)Dap)fa = constant} (4)
Also it is given that the kernel, p ¢, is of dimension k. Thusin

(4) ¢ has 2* distinct values. Corresponding to each value of ¢, d
can be chosen in 2 ways. Therefore, the total number of waysin
which (¢, d) can be chosen so that D 4)D 49 iS constant is
2k, 2 = 2¥*1 Hence ED g g, CONMAINS exactly 2k+1 dements.

Theorem 2: Let niseven and n =t + 1 and [ be integer such

that [ = % or = t;—l , define a function g defined on F,n as

glx,y) = +y)trf (x21+3 + x) + ytrt (x21+3), then second
order nonlinearity of g isgiven by

1 ante nte
nly(g) = 2" =2+ 27 — 2

Proof: g(x,y) = (1 + y)tr{ (le+3 + x) + ytrf (x21+3)
Comparing this equation to Lemma 3, when 1 =1 we get
F(x) = trf(x?'*3), it is given in [3] that the dimension , k, of
the kernel, ¢, r, is <3 i.e, k <3 for al a€ F,,. Hence by
Lemma 3, the dimension, k(a, b), of the kernel, €D a1y is <4
i.e, k(a,b) < 4,foral (a b)€ F,e X F,((a,b) # (0,b)). Hence
the Walsh transform for al (4, 1) € F,e X F, is:

n+k(a,b)

Woqma W) <2 2
Thus the nonlinearity of D(q ) g is:

- 1
nly(Dapg) =2"" — 3 MAXGer, ixp, (Wb g 4y (4 W
n—1 1 _ntk(a,b)
> 2 - 52 2

n+2
>2"1 -2

By using Proposition 2 we get:

n+2
nly(g) = 2" — %\/22" —2@n-2)@n1-27)

3n+4

~ 2n1 —%Jznﬂ +22

n+6

-2z,

Suppose g, (x,y) = ytre (4 x2°-1 )+ 1+
ytre (/1(x23‘1 +x)), then second order nonlinearity of the

function g, defined on 7-variableis:

nl,(gy) = 24
Proof: Clearly g, is cubic function. It is proved in [11] that the
dimension of the kerne €D (a=nf2 is 2 where f;(x,y) =

tr8 (A(x2*1)). By lemma 3 we get that the dimension, k(a, b),
of the kerndl, gD(u,b)gAiS 3,i.e, k(1,b) = 3. Hence the Walsh

transform for all (A4, ) € F,t X F, is:
n+k(1,b)

WD(l‘b)g}_(l‘L u) = 2 2
3 5
WD(l,b)g)L(/l’ H) = 2 2 = 2

Theorem  3:

ie,
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Thusthe nonlinearity of D4 ) g; iS.

— 1
nly (Dapg2) = 271 = 3maxqer, oxe,\Wo 4 r (2 W
=26 2571 = 48

By using Proposition 1 we get:
nl,(g;) = 24.

Theorem 4: Let g(x,y) = ytrf(x23‘1) +(1+ y)trf(sz1 +
x), then second order nonlinearity of the function g defined on
7-variablesis:
nl,(g) = 28

Proof: Clearly g is cubic function. It is proved in [11 ] that the
dimension of the kernel &y, ¢ is 2 at 49 points and 4 at 14 points
in Fye, where fi(x,y) = trf(x2°~1). Hence by Lemma 5, the
dimension, k(a, b), of the kernel, €D 419 is 3 at 98 points and 5
at 28 pointsin F,7. Therefore,

26_2751=48  ifk=3
—_ 2 = , L =D,
nl(D(a_b)g) = I E_l
26272 1 =32, if k =5.
By using Proposition 2 we get:
nly(Dia,n92)

(a,b)EF,6XF,

1
nly(g) = 2° _E\]ZM -2

=2° —~[16384 — 2(98.48 + 28.32)
=64 —~V5184 =28,

Theorem 5: Define Boolean function g;: F,n — F, asfollows

92(x,y) = (1 +y)(f(x) +x) + yf(x), where falx) =
A2y e F,: and | is a positive integer such that
gcd(t,1) = 1 thenfor t > 4, second order nonlinearity of g, is:.

3n+5 n+7

on-1_ %\/2n+1 +272 =272, if n=1mod?2,

nly(g2) =

1 sntd4  nt6

2n-t —E\/Z"“ +272 =27z, ifn=0mod?2.

Proof: Herethefunction f;(x) = trf(A(x?*+2'+1)) is cubic, let
the dimension of the kernel ¢, associated with D, f;(x) is
k(a).Itisprovedin [8] that for all nonzero a € F,e isk(a) < 4
if t is even else k(a) < 3. Hence Lemma 5 gives us for all
a € F,, the dimension, k(a, b), of the kernel, €D (502 is<5

i.e, k(a,b) <5iftisevenelsek(a,b) < 4. Thusfor (u, n) €
Fye X Fy
n+k(a,b)
WD(a'b)gl(u' 77) = 2 2
i.e., Wp g2 (B 1) S{

n+4
2727
n+5

272"

if n=0mod 2

if n=1mod 2

Therefore nonlinearity of D, g, for al (a,b) € Fye X F,
excepta =0anda = b.

1 n+4
2n-1 —52 2, ifn=0mod?2

nl(Dpg2) = 1 n+s
2n-1 _EZT' if n=1mod 2

e For n even, Proposition 2 gives

n+2
nl,(gy) =21 — i\/zzn —202"-2)(2"1-272)

n+6

3n+4
i.e, nly(g) =271t — %\/2”“ +27z —272)

e For n odd, Proposition 2 gives

1 n+3
Tllz(gl) > Zn_l — E 22n — 2(2“ — 2)(2”“1 — ZT)

3n+5 n+7

> n1 - é\/zn+1 +2z —272).

V. COMPARISONS:

In Table 1, (2 and 3) we give the numerical comparison
between the bound obtained in Theorem 1(Theorem 3 and 5)
and the general bound obtained by Carlet [4] and some other
known bounds. it is clear that for n € {3, 6,9} the bounds
obtained by Theorem 1 are very close to maximum known
bounds. Also the bounds on second order nonlinearities
obtained in Theorem 3 and 5 are more efficient.

TABLE1
COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND
ORDER NONLINEARITIES WITH SOME OTHER KNOWN BOUNDS

nr L ower Godeet Carlet's
; bounds General "Hmax
with . . al. [8]
n=3r obtained in bounds bounds [6]
Theorem 1 [4]
3,1 2 -- 2 1
6,2 16 10 10 18
9,3 166 128 75 196
lj’ 1536 1024 600 1760
15,
5 13488 10592 4799 --
18,
6 114688 85732 38391 --
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“Hmax used for maximum known Hamming distance.

TABLE 2
COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND
ORDER NONLINEARITIES OBTAINED BY THEOREM 3 AND 5
(FOR ODD 1) WITH SOME OTHER KNOWN BOUNDS

L ower
bounds Carlet’'s
obtained Godeet General "Hmax
n : al. [8]
in bounds bounds [6]
Theorem [4]
3and 5
6 10 10 10 18
64 64 38 84
10 331 331 150 400
12 1536 1536 600 1760
TABLE 3

COMPARISON OF THE VALUES OF LOWER BOUNDS OF SECOND
ORDER NONLINEARITIES OBTAINED BY THEOREM 5(FOR EVEN
n) WITH SOME OTHER KNOWN BOUNDS

Carlet's
L ower bounds
. ; General *
obtained in bounds Hmax[6]
n Theorem 3and 5
[4]

19 19 40
9 128 75 196
11 661 300 848
13 3071 1200

VI. CONCLUSIONS

In this paper we presented several classes of cubic Boolean
functions which shows good behaviour with respect to
second order nonlinearities and obtained efficient lower
bounds on the second order nonlinearities of the class of
cubic Boolean functions. The functions which are used in
cipher systems are required to have good nonlinearity
profile.
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